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symmetry and we show that, due to the algebraic structure of the Casimirs, the multiplets

are either doublets of spin (s, s + 1) or two spin 1/2 states. Finally, we identify an odd

operator, which is an invariant in a subclass of representations where a BPS-like algebraic

relation between the mass and the values of the central charges is satisfied.
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1. Introduction

The vector supersymmetry (VSUSY) algebra is a graded extension of the Poincaré algebra

in four dimensions. Two fermionic operators are added, an odd Lorentz vector and an

odd Lorentz scalar, and two central charges are allowed. The anticommutator between

vector and scalar odd generators gives the four-momentum vector, from which the name

vector supersymmetry.

This algebra was first introduced in [1] in 1976, with the purpose of obtaining a pseudo-

classical description of the Dirac equation. However, to our knowledge its general algebraic

properties have never been studied in detail. Due to the prominent role of supersymme-

try algebras in field and string theories, VSUSY representations and possible realizations

in physical models are worth exploring. In any case, it would be interesting to compare

this alternative to ordinary supersymmetry to understand what the essential ingredients

in supersymmetry are.

The main difference between vector and ordinary supersymmetry is that the odd gen-

erators of VSUSY do not satisfy the spin-statistics rule. This is not necessarily a problem

for the construction of physical models with underlying VSUSY. In fact, a first example

is the model for the spinning particle constructed in [2], where a quantization procedure
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preserving the underlying VSUSY has been applied, while the authors in [1] had to break

the symmetry.1

There is also an interesting connection between VSUSY and topological field theories.

In fact, an Euclidean version of VSUSY appears as a subalgebra of the symmetry alge-

bra underlying topological N = 2 Yang-Mills theories. Supersymmetry with odd vector

generators was studied after Witten [4], who, in 1988, introduced topological N = 2 Yang-

Mills theories by performing a topological twist. After this twist, the fermionic generators

become a vector, a scalar and an anti-selfdual tensor [5, 6]. After truncation of the anti-

selfdual sector, the twisted algebra coincides with the Euclidean VSUSY algebra, in the

special case when the two central charges of VSUSY are identified. Twisted topological

algebras have proven to be useful in the study of renormalization properties of topolog-

ical field theories [7, 8]. Moreover, a superspace formalism has been developed for these

topological theories, see for example [5, 6, 9] and references therein.

An understanding of the physical content of theories with underlying VSUSY can be

achieved by classifying VSUSY representations. A first step in this direction is to identify

the Casimir operators of the algebra. We find that there are four Casimirs, P 2, Z, Z̃ and

Ŵ 2. Here Pµ is the four-momentum, Z and Z̃ are the central charges and Ŵ 2 is the square

of Ŵµ, the analogue of the superspin vector of ordinary supersymmetry [10], which is a

generalization of the Pauli-Lubanski vector. The Pauli-Lubanski vector, which determines

the spin of particles, can be written as a sum of this vector Ŵµ and another one, WC µ.

The latter is constructed in terms of the generators of the supertranslation subalgebra of

VSUSY. It squares to P 2 and has spin 1
2 . As a result of this structure, a VSUSY irreducible

representation contains two particles of Lorentz spin s = |Y ± 1
2 |, where Y is the superspin

having integer or half integer value. In particular, in the case Y = 0, one has two spin

1/2 states. The described structure holds for the generic case with nonvanishing central

charges, on which we focus in this paper. In the case of vanishing central charges the

contribution of the Pauli-Lubanski vector vanishes in the expression of the superspin. We

leave this special case for future work.

A comparison with the case of ordinary supersymmetry is in order. We observe that

also in that case the Pauli-Lubanski vector can be written as the sum of the superspin

vector and another spin vector (see for example [11]). The main difference between the

two cases is that for ordinary supersymmetry the second spin vector does not square to

a Casimir.

In case the mass and central charges satisfy a BPS-like relation, we identify an odd

operator that behaves as a Casimir. In general, odd Casimirs can be present when the odd

generators are scalars or vectors. In the case of VSUSY, there is no odd Casimir but we

have constructed an odd nilpotent operator, invariant in the subclass of representations

where the mentioned relation between mass and central charges is satisfied.

A good strategy to gain some understanding about a new algebra is to try to relate it

to some other, better-known algebra. In this direction, we show that VSUSY arises as a

contraction of the superalgebra OSp(3, 2 |2). OSp algebras are very simple generalizations

1See also [3].
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of SO or Sp algebras. SO algebras have a symmetric metric, Sp algebras have an anti-

symmetric metric and OSp algebras have a ‘graded symmetric’ metric. OSp algebras are

natural candidates for an embedding of VSUSY. The reason is that we need our VSUSY

fermions to appear as vectors (or scalars) of the Lorentz group. In general, for OSp(M |N)

algebras the fermions are vectors of SO(N) and of Sp(M). We also need a bosonic factor

to embed the two central charges. Therefore, we will use the embedding in OSp(3, 2 |2),

whose bosonic part is SO(3, 2) × Sp(2). The latter factor can host the central charges we

want to include.

We have also rederived the VSUSY Casimirs by contraction from OSp(3, 2 |2). This

procedure turns out to be rather nontrivial, mainly due to the fact that VSUSY has two

central charges. In fact, OSp(3, 2 |2) has three independent Casimirs, while, as mentioned

above, VSUSY has four. Therefore, some nontrivial combination of the OSp Casimirs to-

gether with a careful limit procedure have to be performed to derive the VSUSY superspin.

It is interesting to compare this result to the case of ordinary N = 1 SUSY in

four dimensions. The corresponding superalgebra can be derived by contraction from

OSp(1|4) [12], which has two independent Casimirs. Contraction of the first leads to P 2,

while contraction of the second leads in fact to the superspin operator, but in a form that

is not at all familiar to physicists (see for instance [13 – 15]). Therefore, in the case of

ordinary N = 1 SUSY, all Casimir operators can be obtained by direct contraction from

the OSp embedding algebra.

The paper is organized as follows. In section 2 we introduce the VSUSY algebra and

we present its Casimir operators. Moreover, we compare our result to the analogue for

ordinary supersymmetry. In section 3 we briefly introduce the OSp(3, 2 |2) algebra and

we show how to derive VSUSY by a contraction procedure. In section 4 we discuss the

contraction of the Casimir operators and specially how to derive the analogue of superspin

for VSUSY. In section 5, we summarize our results and we present our plans for future

work. In appendix A, we show in detail how to derive all independent Casimirs of VSUSY.

In appendix B, a brief technical introduction to OSp algebras is given and our conventions

are stated. Finally, in appendix C, some commutation relations useful for the contraction

procedure are given.

2. VSUSY and its Casimir operators

2.1 VSUSY algebra

The vector supersymmetry (VSUSY) algebra in 4 dimensions is a graded algebra defined

by the even generators Pµ, Mµν , Z, Z̃, and by the odd generators Gµ and G5. The

algebra of the even generators Pµ and Mµν is the usual Poincaré algebra, whereas the odd

generators behave respectively as a four-vector and a scalar under the Lorentz group and

are translationally invariant. The non-zero (anti)commutation relations are

[Mµν ,Mρσ ]− = ηνρMµσ + ηµσMνρ − ηνσMµρ − ηµρMνσ , (2.1)

[Mµν , Pρ]− = −ηµρPν + ηνρPµ , [Mµν , Gρ]− = −ηµρGν + ηνρGµ ,

[Gµ, Gν ]+ = ηµνZ , [G5, G5]+ = Z̃ , [Gµ, G5]+ = −Pµ ,

– 3 –
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where we use [·, ·]− for commutators and [·, ·]+ for anticommutators. Here and after, the

following conventions will be used for the metric and the Levi Civita tensor

ηµν = diag(−1,+1,+1,+1) , ǫ0123 = −ǫ0123 = 1 . (2.2)

Two remarks should be made concerning these equations. First, the VSUSY algebra makes

perfect sense as a real algebra. The ‘i’ factors appearing in [2] were introduced for physical

reasons. Since in this paper we are mainly concerned with algebraic properties, we omit

them. The complex version of the commutation relations can be obtained by replacing Mµν

with iMµν in (2.1). Second, Z and Z̃ are central charges. Therefore, in any representation

they can be considered as numbers.

In the case of non-vanishing Z and Z̃, only their signs and their product are relevant.

This can be seen by rescaling

Ĝµ =
1

α
Gµ , Ĝ5 = αG5 . (2.3)

As a result, the odd sector of the algebra becomes

[Ĝµ, Ĝν ]+ = ηµν Ẑ = ηµν
1

α2
Z , [Ĝ5, Ĝ5]+ = ̂̃Z = α2Z̃ , [Ĝµ, Ĝ5]+ = −Pµ . (2.4)

We can choose α2 =
√

|Z|

|Z̃|
, so that the two new central charges have the same absolute

value |Ẑ| = | ̂̃Z| =
√

|ZZ̃| = c and the algebra is specified by the value of c and by the signs

of Z and Z̃ as

[Ĝµ, Ĝν ]+ = ηµνsign(Z) c , [Ĝ5, Ĝ5]+ = sign(Z̃) c , [Ĝµ, Ĝ5]+ = −Pµ . (2.5)

2.2 Casimir operators

The central charges Z and Z̃ are trivial Casimirs of VSUSY. It is also easy to see that

P 2 is a Casimir for VSUSY. As in the case of ordinary supersymmetry, we expect that an

analogue of superspin [10] could be constructed by starting from a generalization of the

Pauli-Lubanski vector

W µ =
1

2
ǫµνρσPνMρσ . (2.6)

W 2 itself is not a Casimir. As a result, particles of different Lorentz spin will appear in

the same multiplet. The correct VSUSY generalization of the Pauli-Lubanski vector is

Ŵ µ =
1

2
ǫµνρσPν(ZMρσ − GρGσ) , (2.7)

whose square Ŵ 2 is a Casimir. More details concerning how to derive these Casimir opera-

tors and how to prove that there are no further independent ones are given in appendix A.

By introducing the new vector

W µ
C =

1

2
ǫµνρσPνGρGσ , (2.8)
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one can rewrite formula (2.7) as

ZW µ = Ŵ µ + W µ
C . (2.9)

One can easily prove that W 2
C is also a Casimir. However, it is not independent, since

W 2
C = Z2P 2 3

4
. (2.10)

From now on, we are implicitly considering the case of representations with Z 6= 0. In

that case Z is just a number and can be divided out. The three vectors W µ
∗ = Ŵ µ

Z
, W µ,

W
µ
C

Z
all commute with Pµ and G5 and verify the relation

[W µ
∗ ,W ν

∗ ]− = ǫµνρσPρW∗σ . (2.11)

Therefore, in the rest frame of the massive states where P 2 = −m2, they satisfy the

rotation algebra

[
W i

∗

m
,
W j

∗

m

]

−

= ǫijk W∗k

m
, (2.12)

and define three different spins. The superspin Y labels the eigenvalues −m2Z2Y (Y + 1)

of the Casimir Ŵ 2. The spin associated to W 2
C (C-spin) is fixed to 1/2, as one can see

from (2.10). Finally, we denote the usual Lorentz spin by s.

On the other hand, only W µ
∗ = 1

Z
Ŵ µ commutes with Gλ, and thus only the superspin

Y characterizes a multiplet. Since

[
Ŵ µ,W ν

C

]

−
= 0 , (2.13)

one can immediately obtain the particle content of a VSUSY multiplet by using the formal

theory of addition of angular momenta applied to (2.9). As a result, a multiplet of superspin

Y contains two particles of Lorentz spin Y ± 1/2, for Y > 0 integer or half-integer. In

the degenerate case of superspin Y = 0, the multiplet consists of two spin 1/2 states. In

particular, we observe that a VSUSY multiplet contains either only particles of half-integer

Lorentz spin or only particles of integer Lorentz spin. The spinning particle constructed

in [2] is a realization of the degenerate case Y = 0.

To summarize, we draw the following table 1. The last column refers to the particle

model in [2]. We stress that the eigenvalues appearing in the table are all negative due to

the fact that we have chosen a real algebra and antihermitian operators.

2.3 Superspin and Lorentz spin for ordinary supersymmetry

Both for ordinary supersymmetry and VSUSY it is possible to construct a superspin

Casimir operator starting from a generalization of the Pauli-Lubanski vector. In this

section we would like to revisit the construction of the superspin Casimir for ordinary

supersymmetry along the lines of what we have done for VSUSY.

– 5 –
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eigenvalue vector superparticle

1
Z2 Ŵ 2 −m2 Y (Y + 1) superspin = Y Casimir Y = 0
1

Z2 W 2
C −m2 3

4 C spin = 1
2 Casimir C = 1

2

W 2 −m2 s(s + 1) Lorentz spin = s = |Y ± 1
2 | not Casimir s = 1

2

Table 1: Properties of three spins and eigenvalues.

We normalize the supersymmetries by assuming that the anticommutator between

components Qα of the spinorial supersymmetry charge Q has the form
[
Qα, Qβ

]

+
= 2

(
γµC−1

)αβ
, (2.14)

where C is the antisymmetric charge conjugation matrix used to define Q̄ = QT C. The

suitable generalization of the Pauli-Lubanski vector W µ reads [10]

Zµ = W µ −
1

8
Q̄γµγ5Q , (2.15)

where γ5 = γ0γ1γ2γ3, so that (γ5)
2 = −1 and γµνγ5 = −1

2ǫµνρσγρσ. Its commutator with

the supersymmetry charge is

[Zµ, Q]− =
1

2
PµQ , (2.16)

such that ZµP ν − ZνPµ commutes with Q. The superspin Casimir operator is usually

written in the literature in the form

C =
1

2
(ZµPν − ZνPµ) (ZµP ν − ZνPµ) = Z2P 2 − (Z · P )2 . (2.17)

In the representations where the Casimir P 2 is nonvanishing, we can equivalently consider
C

P 2 as the superspin Casimir. The latter can be expressed as the square of the vector

Ŵ µ = Zν

(
δν

µ −
PνPµ

P 2

)
= W µ −

1

8
Q̄γνγ5Q

(
δν

µ −
PνPµ

P 2

)
. (2.18)

Then, exactly as in the case of VSUSY, the Pauli-Lubanski vector is the sum of two

commuting vectors [11],

W µ = Ŵ µ + W̃ µ
C . (2.19)

where

W̃ µ
C =

1

8
Q̄γνγ5Q

(
δν

µ −
PνP

µ

P 2

)
. (2.20)

Moreover, as in the VSUSY case, the three vectors W µ
∗ = W µ, Ŵ µ, W̃ µ

C satisfy

[W µ
∗ ,W ν

∗ ]− = ǫµνρσPρW∗σ . (2.21)

Also as in the VSUSY case, Ŵ µ and W̃ ν
C commute. However, in this case W̃ 2

C is not a

Casimir, in contradistinction to the VSUSY case, where it is proportional to P 2. Despite

– 6 –
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this fact, it is still possible to use this decomposition in the derivation of the particle content

of a multiplet for ordinary supersymmetry.

We have

W̃ 2
C = −

3

32
(Q̄+Q+)(Q̄−Q−) +

3

8
(Q̄+/PQ−) . (2.22)

where Q± are chiral projections of the Majorana super charge

Q± = P±Q, P± =
1

2
(1 ± iγ5) . (2.23)

In terms of these projections, the odd sector of the ordinary supersymmetry algebra can

be rewritten as follows
[
Qα

+, Qβ
−

]

+
= 2(P+/PC−1)αβ ,

[
Qα

±, Qβ
±

]

+
= 0 . (2.24)

The Hilbert space of the theory contains states of three kinds

|Y >, Qα
+|Y >, (Q̄+Q+)|Y > , (2.25)

with

Qα
−|Y >= 0, Ŵ 2|Y >= −P 2 Y (Y + 1)|Y > . (2.26)

The values of the C-spin for these states are

W̃ 2
C |Y > = 0 ,

W̃ 2
C Qα

+|Y > =
3

4
P 2 Qα

+|Y > ,

W̃ 2
C(Q̄+Q+)|Y > = 0 . (2.27)

Then |Y > and (Q̄+Q+)|Y > have C-spin 0 and Qα
+|Y > have C-spin 1

2 . The Lorentz

spin is the sum of Y-spin and C-spin. In this way, we rederive the well known result that

|Y > and (Q̄+Q+)|Y > have Lorentz spin Y and Qα
+|Y > have the Lorentz spins |Y ± 1

2 |.

Note the difference with the VSUSY case where the C-spin is fixed to 1/2 and therefore

formula (2.9) allows for a direct derivation of the particle content of a multiplet. In the

ordinary supersymmetry case, together with the analogous formula (2.19), one needs to

know also the Hilbert space structure given by formula (2.25).

2.4 Odd ‘Casimir’

For ordinary supersymmetry, there can be no odd Casimirs, as the fermions are spinors

and hence do not commute with the Lorentz generators. However, for VSUSY this argu-

ment does not hold. We can find an operator that commutes with all generators of the

algebra under one condition on the mass and central charges, a BPS-like condition. This

is an invariant operator in certain representations of the algebra (we call it ‘Casimir’ in

this paper).

We consider the simplest possibility of an odd operator linear in the anticommuting

generators (Gµ, G5). The set of conditions one obtains when imposing that such opera-

tor commutes with Gµ and G5 admit a nontrivial solution when the determinant of the

– 7 –
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following matrix is zero:

[GA, GB ]+ =

[
ηµνZ −Pµ

−Pν Z̃

]
, GA = (Gµ, G5) . (2.28)

The determinant vanishes when the following BPS-like condition is satisfied:

ZZ̃ + m2 = 0 . (2.29)

In this case, the matrix (2.28) admits the eigenvector (Pν , Z) with zero eigenvalue. There-

fore, the odd ‘Casimir’ we are looking for has the form

Q = G · P + G5Z . (2.30)

It commutes with all the generators under the condition (2.29), implying that when m 6= 0

both Z and Z̃ are nonvanishing and have opposite sign. We can rewrite this condition in

terms of the variable c introduced at the end of section 2.1 and the signs of the central

charges as

c =

√
|ZZ̃| = |m| , sign(Z) = − sign(Z̃) . (2.31)

We notice that Q is of course a ‘Casimir’ also when m = 0, but in that case one or both

central charges must be zero. We are not studying this case in this paper.

Q acts as an odd constant on the states in the representations satisfying condi-

tion (2.29). Therefore, unless the model under consideration has a natural odd constant,

Q has to annihilate all states in those representations. As a result, the physical role of the

odd ‘Casimir’ is to give a Dirac-type equation for the particle states.

In principle, one could also look for odd Casimirs that are cubic or of higher order in

the odd generators. In fact, one can prove that such higher order ‘Casimirs’ do not arise.

A brief discussion of this point is presented at the end of appendix A.

3. VSUSY as a contraction of OSp(3, 2 |2)

It is interesting to explore the connection of VSUSY with other algebras. Concerning this

point, we have already mentioned in the introduction that the Euclidean version of VSUSY

is related to the symmetries of topological N = 2 Yang-Mills theories.

In this section we study the relation of Minkowskian VSUSY with the simple or-

thosymplectic algebra OSp(3, 2 |2). We show that our algebra arises as a subalgebra of an

Inönü-Wigner contraction (further we just write ‘contraction’) of OSp(3, 2 |2). In fact, the

ordinary supersymmetry algebra can also be derived by a similar contraction procedure

from OSp(1|4), as shown in [12].

Both ordinary supersymmetry and VSUSY are generalizations of the Poincaré algebra.

The Poincaré algebra itself is not a simple algebra. There are, however, two well-known

connections to simple algebras. First, the Poincaré algebra can be seen as a contraction of

a simple algebra. The simple algebra is then the de Sitter algebra, where one introduces

a scale λ, such that for λ → ∞ the Poincaré algebra results using the same generators.

Another procedure starts from the conformal algebra, of which Poincaré is a subalgebra.

– 8 –
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For superalgebras the same facts hold. The ordinary supersymmetry algebra is a con-

traction of a super-de Sitter algebra and a subalgebra of a superconformal algebra, which

are both simple superalgebras. Apart from a few exceptions, the infinite series of superal-

gebras is either a generalization of U(N), i.e. SU(N |M) superalgebras, or a generalization

of SO(N), i.e. OSp(N |M), which can also be seen as generalizations of Sp(M).

A tricky point for ordinary supersymmetry is that the fermions should be in spin

representations, while in OSp(N |M) the fermions are vectors of SO(N) and of Sp(M).

Therefore, the bosonic spacetime group in these superalgebras can not be recognized as

the SO(N) subalgebra of OSp(N |M) (with N including both signatures). Instead, we

have to use e.g. for 4 dimensions the equivalences Spin(3, 2) = Sp(4) for the (anti)-de

Sitter algebra and Spin(4, 2) = SU(2, 2) for the conformal algebra. Then the superalgebras

that can be used are respectively OSp(N |4) and SU(2, 2|N) [16], so that the fermions,

being vectors of Sp(4) or SU(2, 2) are spinors of SO(3, 2) or SO(4, 2). For VSUSY we do

not have this difficulty. We want the fermions to appear as a vector (or a scalar) of the

Lorentz group. Therefore we will use the embedding in OSp(3, 2 |2), whose bosonic part is

SO(3, 2) × Sp(2).

A brief introduction to OSp algebras including more technical details is given in ap-

pendix B. For what follows, it is enough to know that the OSp(3, 2 |2) generators are

Mµν , Pµ, Z, Z̃, Z ′ (bosonic) and Gµ, Sµ, G5, S5 (fermionic). The subset of generators

(Mµν , Pµ, Z, Z̃,Gµ, G5) has the correct structure to generate the VSUSY algebra. However,

the OSp(3, 2 |2) commutation relations for the sector of interest are2

[Mµν ,Mρσ]− = ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ ,

[Mµν , Pρ]− = ηνρPµ − ηµρPν ,

[Pµ, Pν ]− = Mµν ,

[Mµν , Gρ]− = ηνρGµ − ηµρGν ,

[Pµ, Gν ]− = −ηµνS5 , [Pµ, G5]− = −Sµ , [Gµ, Gν ]+ = ηµνZ ,

[Gµ, G5]+ = −Pµ , [G5, G5]+ = Z̃ ,
[
Gµ, Z̃

]

−
= 2Sµ , [G5, Z]− = 2S5 ,

[
Z, Z̃

]

−
= 4Z ′ . (3.1)

Therefore, it is clear that VSUSY is not a subalgebra of OSp(3, 2 |2), but it could arise

after a proper contraction. In order to do this, we rescale the OSp(3, 2 |2) generators with

a dimensionless parameter λ as follows:

Mµν → Mµν , Z ′ → Z ′ ,

Pµ → λ2Pµ , Z → λ2Z , Z̃ → λ2Z̃ ,

Gµ → λGµ , G5 → λG5 , Sµ → λSµ , S5 → λS5 , (3.2)

and consider the limit λ → ∞. As a result, the commutation relations (3.1) reduce to the

VSUSY algebra (2.1).3

2For completeness, the remaining commutation relations are given in (B.7) in appendix B.
3We give the contraction limit of the remaining commutation relations of OSp(3, 2 |2) in appendix C.
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Therefore, we can conclude that the VSUSY algebra is a subalgebra of the contraction

limit of OSp(3, 2 |2).

4. Contraction of the Casimir operators

In this section we derive the Casimir operators of VSUSY by contraction from OSp(3, 2 |2).

OSp(3, 2 |2) has 3 independent Casimir operators [17], C2, C4 and C6, of the form

Cn = str(Mn) =
∑

(−1)AMA
BMB

C . . . MC
DMD

A , (4.1)

where the generators MAB of OSp(3, 2 |2) are parametrized as in (B.6) in appendix B.

Explicitly, the quadratic Casimir reads

C2 = MµνMνµ + 2PµPµ + 2 [Gµ, Sµ]− + 2 [G5, S5]− − 2Z ′2 − [Z, Z̃]+ . (4.2)

We do not give explicitly the lengthy formulas for C4 and C6. In the following, we have

used Mathematica-coding based on the superEDC package developed by Bonanos [18] to

derive and handle such expressions.

We have shown in the previous section that VSUSY is only a subalgebra of the con-

traction limit of OSp(3, 2 |2). Therefore, when we take the contraction limit of the Casimir

operators of OSp(3, 2 |2), we obtain Casimir operators of the contracted algebra, contain-

ing VSUSY as a subalgebra. In order to obtain Casimir operators of VSUSY, we have to

eliminate the extra operators Sµ, S5 and Z ′. For our purposes, the best way to do this is

to introduce a second parameter β and make a rescaling

Sµ → βSµ , S5 → βS5 , Z ′ → βZ ′ . (4.3)

By taking the limit β → 0 we reduce to the VSUSY subsector.

By inspection of the λ scaling relations (3.2), it is clear that the combinations P 2 and

ZZ̃ scale with maximal power in λ, so that the direct contraction of the three OSp(3, 2 |2)

Casimirs C2, C4 and C6 can only lead to combinations of these quantities and explicitly

one finds

Cn → 2
(
(P 2)

n
2 − (ZZ̃)

n
2

)
, n = 2, 4, 6 , (4.4)

which are clearly Casimirs of VSUSY. Since Z and Z̃ are central charges, the new in-

formation is that P 2 is a Casimir of VSUSY. Therefore, we can not obtain the VSUSY

superspin Casimir Ŵ 2 (2.7) from a direct contraction procedure, since Mµν does not scale

in λ, see (3.2), and the corresponding term in the superspin Casimir does not have maximal

order in λ.

A way out is to start from a homogeneous polynomial in the OSp(3, 2 |2) Casimirs C2,

C4 and C6 of suitable degree, characterized by the fact that the terms of maximal order in

λ exactly cancel out.

Since Ŵ 2 is of order 6 in the VSUSY generators, the simplest possibility would be to

start from a polynomial of order 6. However, inspection of the general structure of the

OSp(3, 2 |2) Casimirs shows that a term with two Z’s, two Pµ’s and two Mµν ’s will never

appear, due to the symmetric behavior with respect to Z and Z̃.
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Therefore, we move on to the next nontrivial order by considering a polynomial of

order 8. One can then show that, by imposing the vanishing of the maximal order terms

in λ (λ16), the following combination is selected uniquely:

K8 = −4 C6 C2 + 3 C2
4 +

1

4
C4

2 . (4.5)

For the contraction limit to give the leading terms of order λ12 as a result, it is necessary

that not only the λ16, but also the intermediate orders λ15, λ14 and λ13 cancel out. In fact,

the terms of odd power in λ are absent, due to the fact that K8 is even and only fermionic

generators scale with odd powers of λ. We have then checked explicitly that the term of

order λ14 can be reduced to terms of order 12 or lower. To obtain this result, we have

used the (rescaled) commutation relations in (C.1)–(C.3), given in appendix C, and we

have therefore produced some extra terms of lower order in λ. The order 12 terms are the

interesting ones for the derivation of the superspin Casimir because this is the first place

where Mµν terms appear. We have checked that the extra terms at order 12 generated

from the higher order terms by the use of commutation relations vanish after the limit

λ → ∞ is taken. This makes sure that they will not affect the result of the contraction.

We thus have

K8 = λ12K
(12)
8 + λ10K

(10)
8 + . . . . (4.6)

Up to now we have proven that the contraction limit λ → ∞ of K8 gives the order λ12 term

as a result. We still have to show how this term is connected to the superspin Casimir Ŵ 2.

Indeed, one can prove the following relation

K
(12)
8 = 48

(
P 2 − ZZ̃

) (
−

Z̃

Z
Ŵ 2 + β2{terms with(Sµ, S5, Z

′)}

)
+ f(P 2, Z, Z̃) . (4.7)

This analysis proves that Ŵ 2 is a Casimir operator of the VSUSY algebra as a consequence

of the fact that K8 is a Casimir of OSp(3, 2 |2). Indeed, this includes the statement that

any generator T in the VSUSY algebra commutes with K8 and hence

0 = λ−12
[
T,K8

]

−
=

[
T,K

(12)
8

]

−
+ O(λ−1) . (4.8)

We keep in principle the λ and β-dependent commutators in (C.1)–(C.3), and the second

equality holds because these do not involve positive powers of λ. Then we use (4.7) and

the fact that P 2, Z and Z̃ were already recognized as Casimirs of the VSUSY algebra (i.e.

they commute with T up to λ−1 terms) and in the leading order of λ commutators with T

produce according to (C.2) at most terms of order β−1. This leads to

0 = 48
(
P 2 − ZZ̃

) (
−

Z̃

Z

[
T, Ŵ 2

]

−
+ β2b2 + βb1

)
+ O(λ−1) , (4.9)

where b2 and b1 are functions of the operators whose explicit form is not important. There-

fore, if we take first the limit λ → ∞ and then the decoupling limit β → 0, we obtain that

using the commutators of the VSUSY algebra (i.e. dropping λ−1 terms)
[
T, Ŵ 2

]

−
= 0 . (4.10)
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5. Conclusions and outlook

The aim of this paper is to study the basic algebraic properties of the VSUSY algebra and its

connections with other algebras. Our results will hopefully shed light on the classification

of the irreducible representations of the algebra, or, at least, will help in the identification

of a class of physically interesting ones. The representations of VSUSY are not discussed

in this paper. We leave this for future work.

VSUSY shares some common features with ordinary supersymmetry, for instance the

fact that the anticommutator between the fermionic generators is proportional to the four-

momentum Pµ. On the other hand, the fundamental difference between supersymmetry

and VSUSY is the Lorentz nature of their odd generators, spinors for supersymmetry and

a vector and a scalar for VSUSY. We found that in the case Z, Z̃ 6= 0 VSUSY has four

independent even Casimir operators, Ŵ 2, P 2, Z and Z̃. We have also been able to construct

an odd operator Q, which is nilpotent and behaves like a Casimir when a BPS-like relation

between the central charges and the four-momentum is satisfied (ZZ̃ = P 2).

The Casimir operator Ŵ 2 is the square of a Lorentz vector Ŵµ, which is the VSUSY

extension of the ordinary Pauli-Lubanski vector. In the rest frame, it satisfies the SU(2)

algebra and gives rise to the superspin Y , the analogue of superspin for VSUSY. We want

to stress that it is necessary to have both central charges different from zero to ensure

that this superspin operator is an independent Casimir. In fact, in the case Z = Z̃ = 0 it

collapses to P 2, up to a constant. On the other hand, the Casimir operator P 2 is related

to another Lorentz vector, denoted by W µ
C . In the rest frame, W µ

C also satisfies an SU(2)

algebra and defines a different kind of spin, fixed to the value 1
2 . As a result of the algebraic

relation among the three spin-generating vectors, a multiplet consists of a doublet of spin

(s, s + 1) or two spin 1/2 states.

In this paper we have also investigated the relations between VSUSY and other al-

gebras. First of all, we have observed that an Euclidean version of VSUSY is a subalge-

bra of the N = 2 topological algebra. Furthermore, by exploiting the fact that VSUSY

displays fermionic generators which are a vector and a scalar, we have shown how the

(Minkowskian) VSUSY generators are naturally embedded in the simple orthosymplectic

superalgebra OSp(3, 2 |2).

We have derived the VSUSY algebra and all its independent Casimirs from OSp(3, 2 |2)

by performing a suitable contraction limit.

The issue of classification of VSUSY irreducible representations remains. One pos-

sibility in this direction is to rewrite the odd sector of the VSUSY algebra in terms of

the generators of a five-dimensional or six-dimensional Clifford algebra, for which all the

irreducible representations have already been classified. Another possibility would be to

exploit the embedding of the VSUSY algebra in OSp(3, 2 |2) to derive the representations.

One of the final goals would be to construct physically relevant models with underlying

VSUSY. A first example of a particle model is given in [2]. In a field theory context, it

would be nice to develop a superspace formalism for VSUSY. In this direction, the connec-

tion between VSUSY and N = 2 topological theories could turn out to be useful, since a

(twisted) superspace setup has already been constructed in that case [6]. We are currently

working on these developments [19].
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A. Casimirs of VSUSY

In this appendix we present a general procedure to derive all independent Casimir operators

of VSUSY.

We start from the most general form of an even Casimir operator of the VSUSY

algebra, which reads

C = C + CµνGµGν + Cµ5GµG5 + C∗ǫµνρσGµGνGρGσ + C∗
µǫµνρσGνGρGσG5 , (A.1)

where the coefficients C’s are functions of the bosonic generators (P,M,Z, Z̃) and Cµν is

antisymmetric. Any even products of G’s can be arranged in the above form using the

algebra (2.1).

The condition [C, G5]− = 0 implies

2CµνPν −Cµ5Z̃ = 0 , Cµ5Pµ = 0 , 4C∗Pµ + C∗
µZ̃ = 0 , C∗

µǫµνρσPσ = 0 , (A.2)

and for non zero Z̃ we solve these for Cµ5 and C∗
µ and obtain

C = C + CµνG̃µG̃ν + C∗ǫµνρσG̃µG̃νG̃ρG̃σ . (A.3)

Here G̃µ is defined by

G̃µ ≡ Gµ +
1

Z̃
PµG5 , (A.4)

and satisfies

[G̃µ, G5]+ = 0 and [G̃µ, G̃ν ]+ = ηµνZ −
PµPν

Z̃
. (A.5)

The invariance of C with respect to the Poincaré subgroup implies that the C’s transform

as Lorentz covariant tensors and that they are functions of (Pµ,Wµ, Z, Z̃). The covariance

requires that C, Cµν and C∗ have the following form

C = C(P 2,W 2, Z, Z̃) , C∗ = C∗(P 2,W 2, Z, Z̃) ,

Cµν = C ′(P 2,W 2, Z, Z̃)ǫµνρσPρWσ + C ′′(P 2,W 2, Z, Z̃)P [µW ν] . (A.6)

The remaining condition [C, Gµ]− = 0, or, equivalently, [C, G̃µ]− = 0 has then to be con-

sidered. We have three Casimirs independent of G̃’s,

P 2 , Z and Z̃ , (A.7)
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whereas W 2 is not a Casimir of the VSUSY algebra.

The most general structure of a Casimir of second order in G̃ is

C(2) = C(P 2,W 2, Z, Z̃) + C ′ǫµνρσPρWσG̃µG̃ν + C ′′(PµW ν − P νW µ)G̃µG̃ν . (A.8)

We start by considering the commutator of the second term with G̃λ. After some algebraic

manipulations we obtain

[ǫµνρσPρWσG̃µG̃ν , G̃λ]−=2Z
(
ǫµνρ

λPµWνG̃ρ+(P 2G̃λ−(PG̃)Pλ)
)

=−Z[W 2, G̃λ]− . (A.9)

This equation can be written as

[ZW 2 + ǫµνρσPρWσG̃µG̃ν , G̃λ]− = 0 . (A.10)

Therefore, we have found a Casimir with a second order term in G̃µ:

C(2) = ZW 2 + ǫµνρσPρWσG̃µG̃ν = ZW 2 + ǫµνρσPρWσGµGν . (A.11)

In the previous formula, the Pµ terms in G̃µ do not contribute. It is convenient to introduce

a vector that is a polynomial in the generators,

Ŵ µ ≡ ZW µ −
1

2
ǫµνρσPνGρGσ =

1

2
ǫµνρσPν(ZMρσ − GρGσ) . (A.12)

Its square gives an alternative form of the Casimir operator C(2) in (A.11) for the VSUSY

algebra since

Ŵ 2 = ZC(2) +
3

4
P 2Z2 . (A.13)

The commutator of the C ′′ term in (A.8) with G̃τ has a linear and a cubic part in G̃µ. In

principle, these terms could cancel with the contributions coming from the quartic term

in (A.3). We obtain with a convenient normalization (C ′′ = 1/2 and C∗ = b
12 Z̃)

[
P [µW ν]G̃µG̃ν +

b

12
Z̃ǫµνρσG̃µG̃νG̃ρG̃σ, G̃τ

]

−

= ZPµG̃µWτ −
1

Z̃

(
ZZ̃ − P 2

)
W µG̃µPτ

+
1

3
ǫµνρσG̃µG̃νG̃ρ

(
(1 − b)PσPτ + (bZZ̃ − P 2)ηστ

)
. (A.14)

It is tantalizing that all but the first term cancels for b = 1 when the BPS-like condition

ZZ̃ − P 2 = 0 holds. However, the first term remains and so the hoped cancellation does

not occur.

Finally, one may look for higher order odd ‘Casimirs’. For Z̃ 6= 0, as we always assume

in this paper, in the algebra written in terms of G̃µ and G5, the only nontrivial commutator

involving G5 is the one between G5 and itself. Therefore, requiring that such a Casimir

commutes with G5 implies that G5 can not explicitly appear, and the only expression that

we should look at is

Q(3) = BµG̃µ + AµǫµνρσG̃νG̃ρG̃σ , (A.15)
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where Aµ and Bµ are bosonic vectors, functions of Pµ, Wµ, Z and Z̃. We impose that this

commutes with G̃λ, under the condition (2.29). It can be easily checked that only Bµ = Pµ

and Aµ = 0 give a solution, which is the one mentioned in (2.30).

In summary, we have shown that there are four even Casimir operators of the

VSUSY algebra,

Z , Z̃ , P 2 and Ŵ 2 , (A.16)

and the odd ‘Casimir’ Q of (2.30) in representations satisfying (2.29),

Q = G · P + G5Z , P 2 − ZZ̃ = 0 . (A.17)

B. Definition and conventions for OSp algebras

OSp algebras are very simple generalizations of SO or Sp algebras. The SO algebras have

a symmetric metric, the Sp algebras have an antisymmetric metric, and the OSp algebras

have a ‘graded symmetric’ metric.

To understand graded symmetry, one needs the supertranspose of tensors. If one

has graded indices A,B, . . . which are either bosonic (then (−)A = 1) or fermionic (with

(−)A = −1), supertranspose acts differently according to whether an index is upper or

lower. We have

TAB : supertranspose : (−)ABTBA ,

TAB : supertranspose : (−)AB+A+BTBA ,

TA
B : supertranspose : (−)AB+BTB

A ,

TA
B : supertranspose : (−)AB+ATB

A , (B.1)

i.e., apart from the (−)AB factor, there is an extra factor when a lower index changes from

first to last position. A supertrace is made with a factor (−)A:

str T = (−)ATA
A , or str T = (−)ATA

A , (B.2)

which means that this definition is invariant under supertranspose. Moreover, the super-

transpose of the product of matrices M N is NT MT .

A general treatment is given in [20]. The matrices that we use are all of ‘bosonic type’

in the terminology of this book.

The superalgebra OSp consists of matrices preserving a graded symmetric metric ηAB .

When we use α for the part of the indices A that are bosonic and i for those that are

fermionic, we can block-diagonalize such that ηαi = ηiα = 0, ηαβ = ηβα and ηij = −ηji. We

use ηαβ = diag(−1,+1,+1,+1,−1) and η21 = 1 for the OSp(3, 2 |2) metric. The generators

MAB are graded antisymmetric, which thus means that

MAB = (−)(A+1)(B+1)MBA , (B.3)

and we can use the inverse of η to raise and lower indices, having the care of putting

summed indices always in adjacent positions.
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In order to obtain the commutation relations with correct signs we should use the struc-

tures defined above. A convenient way consists in forming a supertrace of the generators

and parameters λAB which are graded antisymmetric. This leads to

[MAB ,MCD]± λDC(−)C = 2MADλDCηCB + 2(−)(A+1)(B+1)MBDλDCηCA . (B.4)

The left-hand side uses anticommutators or commutators, according to the type of the

generators. The right-hand side involves a matrix product of Mλη and uses the graded

symmetry for the transpose and a convenient normalization such that the bosonic subal-

gebra has the usual normalization for orthogonal algebras.

When we extract the parameters from (B.4), we have to respect another graded anti-

symmetry and obtain

[MAB ,MCD]± = MADηCB(−)C + (−)(A+1)(B+1)+CMBDηCA

+MACηDB(−)CD+C+1 + (−)(AB+A+B+CD+C)MBCηDA . (B.5)

In the special case of OSp(3, 2 |2) considered in this paper, the generators can be organized

in a graded anti-symmetric supermatrix as

MAB =





Mµν Pµ Gµ Sµ

−Pν 0 S5 G5

Gν S5 Z Z ′

Sν G5 Z ′ −Z̃



 . (B.6)

In this paper, the OSp(3, 2 |2) commutation relations rewritten in terms of the entries of

this matrix are used. They are (3.1) and the other non-vanishing ones are

[Mµν , Sρ]− = ηνρSµ − ηµρSν ,

[Pµ, Sν ]− = −ηµνG5 ,

[Pµ, S5]− = −Gµ ,

[Sµ, Sν ]+ = −ηµνZ̃ ,

[Gµ, Sν ]+ = ηµνZ ′ − Mµν ,

[Sµ, S5]+ = Pµ ,

[S5, S5]+ = −Z ,

[S5, G5]+ = −Z ′ ,[
Gµ, Z ′

]
−

= −Gµ ,

[Sµ, Z]− = 2Gµ ,
[
Sµ, Z ′

]
−

= Sµ ,[
S5, Z̃

]

−
= 2G5 ,

[
S5, Z

′
]
−

= −S5 ,
[
G5, Z

′
]
−

= G5 ,
[
Z,Z ′

]
−

= −2Z ,
[
Z̃, Z ′

]

−
= 2Z̃ . (B.7)

C. Some useful formulas for the OSp(3, 2 |2) contraction

In order to perform the contraction of the OSp(3, 2 |2) algebra only the λ rescaling (3.2)

is necessary. However, in order to obtain the Casimirs of VSUSY, as explained in the
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text, we need to perform also a β rescaling (4.3). Therefore, we give in the following the

commutation relations rescaled both in λ and β.

[Mµν ,Mρσ ]− = ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ ,

[Mµν , Pρ]− = ηνρPµ − ηµρPν , [Mµν , Gρ]− = ηνρGµ − ηµρGν ,

[Pµ, Pν ]− =
1

λ4
Mµν , [Pµ, Gν ]− = −

β

λ2
ηµνS5 , [Pµ, G5]− = −

β

λ2
Sµ ,

[Gµ, Gν ]+ = ηµνZ , [Gµ, G5]+ = −Pµ , [G5, G5]+ = Z̃ ,
[
Gµ, Z̃

]

−
=

β

λ2
2Sµ , [G5, Z]− =

β

λ2
2S5 ,

[
Z, Z̃

]

−
=

β

λ4
4Z ′ .

(C.1)

It is then clear that, by taking the limit λ → ∞ with β fixed, this sector contracts to

VSUSY, given by (2.1), which is thus a subalgebra of this λ-contracted OSp(3, 2 |2).

The nonzero rescaled commutation relations between the operators Sµ, S5 and Z ′ and

those of the VSUSY algebra are:

[Mµν , Sρ]− = ηνρSµ − ηµρSν ,

[Pµ, Sν ]− = −
1

βλ2
ηµνG5 , [Pµ, S5]− = −

1

βλ2
Gµ ,

[Gµ, Sν ]+ =
1

λ2
ηµνZ ′ −

1

βλ2
Mµν ,

[
Gµ, Z ′

]
−

= −
1

β
Gµ ,

[G5, S5]+ = −
1

λ2
Z ′ ,

[
G5, Z

′
]
−

=
1

β
G5 ,

[Z,Sµ]− = −
1

βλ2
2Gµ ,

[
Z,Z ′

]
−

= −
1

β
2Z ,

[
Z̃, S5

]

−
= −

1

βλ2
2G5 ,

[
Z̃, Z ′

]

−
=

1

β
2Z̃ . (C.2)

The nonzero commutation relations among these extra generators are

[Sµ, Sν ]+ = −
1

β2
ηµν Z̃ , [Sµ, S5]+ =

1

β2
Pµ , [S5, S5]+ = −

1

β2
Z ,

[
Sµ, Z ′

]
−

=
1

β
Sµ ,

[
S5, Z

′
]
−

= −
1

β
S5 . (C.3)

The contracted algebra of the OSp(3, 2 |2) is obtained by taking the limit λ → ∞ with

β = 1. Apart from the VSUSY algebra (2.1) the nonvanishing commutation relations are

[Mµν , Sρ]− = ηνρSµ − ηµρSν ,

[Sµ, Sν ]+ = −ηµν Z̃ , [Sµ, S5]+ = Pµ , [S5, S5]+ = −Z ,
[
Gµ, Z ′

]
−

= −Gµ ,
[
Sµ, Z ′

]
−

= Sµ
[
S5, Z

′
]
−

= −S5 ,
[
G5, Z

′
]
−

= G5 ,
[
Z,Z ′

]
−

= −2Z ,
[
Z̃, Z ′

]

−
= 2Z̃ . (C.4)
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